Asymptotic Expansion of a Partition Function Related to the Sinh-model
-15%
portes grátis
Asymptotic Expansion of a Partition Function Related to the Sinh-model
Kozlowski, Karol K.; Guionnet, Alice; Borot, Gaetan
Springer International Publishing AG
07/2018
222
Mole
Inglês
9783319814995
15 a 20 dias
454
Descrição não disponível.
Introduction.- Main results and strategy of proof.- Asymptotic expansion of ln ZN[V], the Schwinger-Dyson equation approach.- The Riemann-Hilbert approach to the inversion of SN.- The operators WN and U-1N.- Asymptotic analysis of integrals.- Several theorems and properties of use to the analysis.- Proof of Theorem 2.1.1.- Properties of the N-dependent equilibrium measure.- The Gaussian potential.- Summary of symbols.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Schwinger-Dyson equation;Riemann-Hilbert problem;Gaussian potential;concentration of measure;loop equations;KPZ models;Toda lattice;six-vertex model;XXZ chains;algebraic Bethe Ansatz;quantum Toda chain;Selberg integral;separation of variables;quantum separation of variables;random matrix theory
Introduction.- Main results and strategy of proof.- Asymptotic expansion of ln ZN[V], the Schwinger-Dyson equation approach.- The Riemann-Hilbert approach to the inversion of SN.- The operators WN and U-1N.- Asymptotic analysis of integrals.- Several theorems and properties of use to the analysis.- Proof of Theorem 2.1.1.- Properties of the N-dependent equilibrium measure.- The Gaussian potential.- Summary of symbols.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.