Intelligent Numerical Methods: Applications to Fractional Calculus

Intelligent Numerical Methods: Applications to Fractional Calculus

Argyros, Ioannis K.; Anastassiou, George A.

Springer International Publishing AG

03/2019

423

Mole

Inglês

9783319800035

15 a 20 dias

670

Descrição não disponível.
Newton-Like Methods on Generalized Banach Spaces andFractional Calculus.- Semilocal Convegence of Newton-Like Methods and Fractional Calculus.- Convergence of Iterative Methods and Generalized Fractional Calculus.- Fixed Point Techniques And Generalized Right Fractional Calculus.- Approximating Fixed Points And K-Fractional Calculus.- Iterative Methods And Generalized G-Fractional Calculus.- Unified Convergence Analysis For Iterative
Algorithms And Fractional Calculus.- Convergence Analysis For Extended Iterative Algorithms
And Fractional And Vector Calculus.- Convergence Analysis For Extended Iterative
Algorithms And Fractional Calculus.- Secant-Like Methods And Fractional Calculus.- Secant-Like Methods And Modified G- Fractional Calculus.- Secant-Like Algorithms And Generalized Fractional Calculus.- Secant-Like Methods And Generalized G-Fractional Calculus Of Canavati-Type.- Iterative Algorithms And Left-Right Caputo Fractional Derivatives.- Iterative Methods On Banach Spaces With A
Convergence Structure And Fractional Calculus.- Inexact Gauss-Newton Method For Singular Equations.- The Asymptotic Mesh Independence Principle.- Ball Convergence Of A Sixth Order Iterative Method.- Broyden's Method With Regularily Continuous Divided Differences.- Left General Fractional Monotone Approximation.- Right General Fractional Monotone Approximation Theor.- Left Generalized High Order Fractional Monotone Approximation.- Right Generalized High Order Fractional Monotone Approximation.- Advanced Fractional Taylor's Formulae.- Generalized Canavati Type Fractional Taylor's Formulae.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Computational Intelligence;Intelligent Systems;Intelligent Numerical Methods;Fractional Calculus;Numerical Analysis;complexity